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Abstract: The temperature dependence of thermal rate constants for hydrogen atom abstraction reactions is
studied using transition-state theory with temperature-dependent effective potential energy functions derived
from a quantum mechanical path integral analysis with a low-temperature correction. The theory uses
temperature-dependent activation energies determined from Gaussian averages of an empirical potential. Simple
analytic expressions are obtained for rate constants. To test the theory the rate constatt fbis-talculated,

and the predicted curvature of the Arrhenius plot is shown to agree with results from accurate quantum scattering
calculations. The predicted curvature for £H H is compared with experimental results and shown to give
better agreement with the observed temperature dependence than do commonly used empirical fits. The
expressiork(T) = aT exp[—(Eo + EiTesr * + ExTerr 3A/RT], with Te = T + To, is suggested for the rate
constant for CH + H, with the parameters, Eo, Ej, E;, andTp obtained from theory rather than by fitting to

the experimental reaction rates.

I. Introduction

The rigorous quantum mechanical calculation of a chemical
reaction rate is a daunting challenge. It requires an accurate a
initio potential energy surface and then a solution of the difficult

guantum scattering equations for the dyanmics of the nuclei.

This has been accomplished in benchmark calculations for a

few simple systemk.However, in practical applications such

as, for example, computer simulations of hydrocarbon combus-

tion,23 it is more typical simply to use empirical expressions
with parameters that are fit directly to experimentally determined

reaction rates. We develop here a semiempirical quantum-

mechanical description of reaction rates. Instead of an ab initio

potential surface, we use an empirical surface parametrized to

fit molecular atomization energies and spectroscopic Hata.

describe the quantum dynamics we propose a simple semiclassi

cal procedure that interpolates between known high- and low-
temperature limits.

In the limit T — oo, it is possible to rigorously derive
semiclassical descriptions of the dynamics. A particularly
convenient approach is the effective potential approximation
developed by Feynmahin which the true potential surfac¥,
is transformed to ar-dependent effective potentiaVes(T),
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which can then be treated with classical mechanics. Although
an improvement over a purely classical description, the effective
otential approach can be somewhat inaccurate at intermediate

, which in practice is the range of particular interest. One way
to extend the validity of the theory is to use a more sophisticated
version of the analysi&’ but this can obscure the appealing
physical picture given by Feynman’s approach. We propose a
very minor modification of the Feynman expression, in which
an empirical parameter is included to improve the accuracy at
low T. This theory remains correct @t— oo, it gives the correct
result atT = 0 K, and it preserves the straightforward
mathematical structure and elegant qualitative picture of the
effective quantum potential.

We will demonstrate this approach in the context of transition-
state theory (TST). This will provide a test of the accuracy of
the theoretical ideas. In addition, it will yield simple analytical
expressions for bimolecular rate constants that could be used
in combustion studies in place of the purely empirical expres-
sions. An important goal of reaction rate theory is the deter-
mination of temperature dependences of rate constants. The
Arrhenius expression,

k= Aexp—E/RT) (1)
whereE, is the activation energy arilis the gas constant, is
often not sufficient for quantitative descriptioh&, is usually
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treated as if it were independent of temperature, and any miks T\ 12

deviation from linear behavior in the plot of Idgvs 1T is = (Znhz)

attributed to temperature dependenceiinClassical collision

theory suggests only a weak temperature dependence of thgpereks is the Boltzmann constant and

preexponential factor, of the fora 0 T2, while theoretical

arguments based on TST with corrections for quantum me- 1 ~

chanical tunneling® can predict significantly different de- Ver(¥) ZFLW

pendences. Our effective quantum potential transition-state 20"

theory (EQPTST) will use a standard TST expressiorAfout

will include quantum effects such as tunneling and zero-point o

energy through th&@ dependence of the effective potential.
First we will present results for the hydrogen exchange

reaction

f e_veff(x)/kBT dx ( 4)

V(X +2) e 727 dz (5)

o K
12miT

6

The significance of this result is the fact that eq 4 has exactly the form
of the classical partition function, except tha¥ is replaced by the
effective potentiaMes, Which is just a Gaussian average\6fvith a
H,+H—H+H, 2 temperature-dependent standard deviatioTihis implies, for calcula-
tions in statistical mechanics, that an approximate quantum result can

This has previously been the subject of rigorous quantum be obtained simply by usinde in place ofV in an otherwise classical

- . . calculation.
mechanical calculations and therefore is a good test case for It has been suggesfédhat classical dynamics on the potentiah

our simple approximate theory. Then we will consider the could be used to simulate quantum dynamics on the true potéhtial

reaction For example, it was showhthat whenVe is used in place o¥ in
TST for the rate constant with a one-dimensional barrier, one obtains
CH,+H—CH;+H, 3) the standard Wigner tunneling correction. This approach can be derived
from a path-integral analysis as an approximation to centroid P&T.

for which there exists an extensive literature of theoretical and "2s been used to describe the diffusion of H on a Cu suffawed the
: a1 o3 g results were later found to agree with those from an elaborate reaction-
experimental studiés 23 on account of its importance as an

| ion in hvd b vsi d busti path variational TST calculation with semiclassical adiabatic tunneling
elementary reaction in hydrocarbon pyrolysis and combustion. ., ectiong?

EQPTST provides an appealing qualitative model for quantum
Il. Method effects. At a minimum ofV, averaging over neighboring points with
, ) ) o eg 5 will increase the potential energy. This accounts for the fact that
_1. Quantum Theory. Feynman’s semiclassical analysis is based on - the minimum ofV is, in practice, inaccessible to the system on account
his path-integral formulation of quantum statistical mechanics. The f the impossibility of localizing a quantum mechanical particle. In
equation for the statistical density matrix is formally identical to that  g¢fect the averaging provides a zero-point energy correction. At a
for the kernel that expresses the time dependence of the wave functionyaximum ofV the averaging reduces the potential energy. In effect
of a quantum mechanical particle over a time interval that is taken {0 s is a tunneling correction. At a saddle pointwfaveraging over a
be negative and imaginary. Thus, calculations in statistical mechanics yiyen coordinate; will reduce the potential i#2V/3z2 is negative and
can be carried out using path-integral techniques of quantum dynamics.jncrease it if92V/z2 is positive. Elsewheré/ can be approximated as
To calculate the partition function from the statistical density matriX, 4 jinear function. in which case the averaging in eq 5 will have little
it is sufficient to consider only paths that return to their starting point.  effect. At high T the quantum effects will be small, because if the
The integrals that need to be evaluated are very difficult to evaluate average kinetic energy is large then only rarely will a particle have a
on account of the need to describe the many possible paths. Howevery,,, engugh kinetic energy that the difference betweleand Ve will
if Tis sufficiently large then one can derive a simple approximate gjgpjficantly affect the dynamics. Accordingly, the standard deviation
expression for the canonical partition functioh,> For a system given by eq 6 goes to zero in the limit of infini®
described by the Hamiltonianfi?/2m d?/dx* + V(x), the result is At T = 0 K, the system, according to classical mechanics, will be

at rest at the nearest minimum \éf The quantum mechanical energy
of the system will be the value &f at this minimum plus a zero-point
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2 2T [sinh(ﬁwlszn

o = N T Rwi2kgT ®)
We can make the high-temperaturé given by eq 6, agree quite well
with ono? at low T by simply substitutingTes = T + To for T in eq 6
with To = Aw/12ks. Figure 1 shows that this substitution signifi-
cantly improves the accuracy of the high-temperature formalism of
egs 4 and 5.

Molecular potential energy surfaces are, of course, anharmonic. In 0 1 2 3 4
particular, the potential energy of a diatomic molecule is steeper for T
compressing the bond than it is for stretching the bond. The use of
ono? to describe the spread of the quantum averaging gives equal weight
to bond compression and stretching. In reality, quantum excursions are
less likely to venture into steeper regions. Therefore, use of a symmetric
probability distribution overestimates the zero-point energy, which
yields too small a value for the bond energy. This problem is even
worse if the hight distribution, eq 6, is used. That result comes from
an analysis in which the effect of the potential energy on the probability
of a given quantum excursion is ignored completely. Hence, the high-
analysis leads to an even smaller value for the bond energy. We wish
to avoid the computational complexity of an analysis in whigh
depends oV. However, since we expect that a more accurate treatment
of the guantum mechanics would give a slightly smaller bond energy,

we will mimic this effect by using eq 6 with a functional form g C—H bonds will be treated as a quadratic polynomial xnthat

consistent with thf I|m|t_s given by eqs 7 but that2 at intermediate interpolates between 109.%or CH,4, 9C¢° for CHs, and 102.4 atx =
gives a value ofo? that is slightly smaller thamwyc? The class of 1.47 Al

functions

(Ouo/0)?

Figure 1. Ratio of Gaussian varianceuo?, eq 8, for the one-
dimensional harmonic oscillator to the Gaussian variariceq 6, from

the high-temperature analysis. The dashed curve shows the result from
approximatingono? with eq 6 but withT + T, substituted forT.

gives agreement with the spectroscopically determined zero-point
energy of 6.29 kcal/mol for k#°

3. Application to Hydrocarbon Reactions. Now consider the
reaction CH + H. We will denote the reacting hydrogen of methane
as H and the nonreacting hydrogens ag Hp, and H. Let x be the
C—H' distance, ley be the H—H distance, and lat, r,, andr. be the
nonreacting € H, distances. The €H'—H configuration is collinear
along the reaction path. The angle between the reactive and nonreactive

The Brenner potential takes the form

») — (7l Lyyy

T =(T7+T5") 9) VOGS 2l ) = Ve 6V ol ol o) + Vi (ViX) + zVCHu(ra;x,rﬂ,ry)

characterized by the free parametewith y > 1, satisfies these criteria. ¢ (15)
2. Application to H + H». The minimum-energy activated complex

for this reaction is linear. Therefore, we will treat this as a problem in ith

two degrees of freedom, in terms of the collinear bond distarecesl

. For V we use Brenner’s potential*lwhich is a sum of two-bod
iynteractions with perturbatioﬁls from n\t,evarby atoms. FotHH, it hasy Vii(ais) = f(a){ DiJ(R) exp[—ﬁij(R)(q N qii(E))] N
the form B,(a9)D;® exp[-5;"(a— ¢)1} (16)

VIxy) = Vian(xy) + Viau(yix) (10) where q is the primary coordinate and is the set of secondary
. . . . . coordinates. (In principle, eq 15 ought to contain in addition a term
In Vi, the first argument is the primary two-body coordinate, while  joqcrining the i-H' potentials, but these interactions are negligible
the second argument describes the position of the neighboring atom., ong the entire course of the reaction path.) The secondary effects are
Vi is the sum of repulsive and attractive potentials, in the form relatively small. Therefore, it is possible to reduce the computational
L ® ® © cost of the quadrature with little effect on the accuracy by introducing
Var(as) = f(@){ D™ exp[=£"(d — q7)] — an approximation into the integration over secondaryHCdistances.
B(q,9D® exp[-A¥(q — )} (11) Consider the quadrature fof+. The effective potential for the €H'
interaction will require the integral
This is a Morse function that has been modified by the functfaarsd
B. f(q) is a cutoff function that smoothly interpolates to zero at large Y — 232 [ [ [®
g. Bis a rather complicated function that models the effects of nearby hi (1) = (270%) f_mf_wf_mB(x,ra T2l T 2l T 2) X
atoms on the primary interaction. g @ 2l + 28207 dz, dz, dz. (17)
The variance for the Gaussian averaging is given by

2 .2 Only the case, = r, = rc = r will be of interest to us. If we replace
Onn- = AT 12001 Ke Teir (12) B with its Taylor expansion in powers of tig, then
Note that the mass in eq 6 has been replaced by the reducedumass, 5
= mu/2. The effective potential ¥er(X,y) = Vun(Xy) + Van(y;X), where h (1) = Bxrr,r) + 302% B_E;r _+ 0(04)
_ ara :
Vin(xy) =
znl zjic!/':o e—(Zx2+ ZyZ)/ZUHHZVHH(X +zy+ Zy) de dZy (13) = 3(2]'[02)_1/2‘/128(X,r +zr,r) 6_22/202 dz —
OhH

2B(x,r,r,r) + O(c®) (18)

In principle, this integration ought to be performed in three-dimensional ) ] o )
space, over vector displacemeatsandz,. However, we have found ~ The notation O¢) means that the error from this approximation will
that integration in one-dimensional space is accurate enough, introducingP€ Proportional tax* in the limit of smallo. Similarly, the effective
significant error only for the very high energy configurations corre- Potential for the G-H, interaction, with secondary nonreacting-8
sponding to smalk or y. We will evaluate the integral using numerical ~ distances set to, will require the integral

guadrature. The value

(29) Huber, K. P.; Herzberg, GMolecular Spectra and Molecular
o Structure: 1V. Constants of Diatomic Molecujé&n Nostrand Reinhold:
TO,HH =513K (14) New York, 1979; p 250.
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2
Qt,H3Qr,H3Qv,sym strethv,bend Qt,antisym stretch

hy, (feir %) = 2(2n02)_1’2j1wm8(ra,r +zrx) e 2 dz+ I

. (24)

(2n0?) Y2 j; B(rgrrx+2) e 7% dz— 2B(r,r.r.x) + O(0) QuQu,Rrn,Qup,
19 . " . .
(19) in terms of partition function§), Q, andQ, for translational,

Thus, theh functions can be computed with one-dimensional quadra- rotational, and vibrational motion, respectively. The temperature

tures, reducing the calculation gf« from a four-dimensional quadrature ~ dependence of the partition functions is

to a two-dimensional one. For example, the effective potential for the

C—H' interaction is QUT¥ QOT Q ,=I[1-exptholks]™,

_ _ o s 2 . 1/2
Ven(Xir) = (2‘7TUCH2) 12 f_m g F12en h,(x+zr)dz+ O(GCH4) Qt,antisym stretch T (25)
(20) . . .
The TST expression fdcis complicated by the dependence on
The physical meaning of this approximation is that, in calculating the the vibrational frequenciesy;, of the reactants and of the
effective potentlal for a primary €H interaction, the only quantum activated Comp|exl but |t can be S|mp||f|ed to the form Of eq 23

fluctuations of secondary nonreacting-8 bonds that we will consider through approximations. Expanding tig about the higlF
are those in which one of these bond distances fluctuates while thelimit givesh= 3/, while taking the lowT limit of the Q, gives
others remain fixed at their equilibrium values. In other words, for b= 1, =

purposes of computing quantum effects on the activation energy, we . .
are ignoring four-body effects while including all two- and three-body Careful benchmark calculations féarare avallablg for the
effects. case of zero total angular momentuth= 0) from rigorous

Note that we will need a different value offor a C—H bond than quantum scattering theory (QS¥§2 or flux autocorrelation
for an H—H bond, on account of the different values for the reduced function calculations (FACF¥ using a Bora-Oppenheimer
mass and foif,. The value potential surface fit to ab initio electronic energies. Such
calculations have also been carried out, approximately] for
0 and then the total rate constant obtained from a weighted sum
overJ.3133(Our present analysis and those of refs-38 assume

Tocn= 247K (1)

gives agreement with the spectroscopically determined zero-point e .
energy of 28.3 kcal/mol for CEP There is a minor inconsistency in that the three H atoms are distinguishable. These results can be

using the Brenner potential with an effective temperature feHC apprOXImately related to IndISFlnnghabIe-atom calculaﬁ‘bn_s
bonds. For the €H well depth, Brenner used the bond energy of the and t0 experimentally determined rate constants as described
CH molecule without subtracting the zero-point enetdywus, we are, in ref 35.) Figure 2 compares the QST and FACF results for
in a sense, adding zero-point energy to a potential that already includestotal rate constants with our results from TST with different
it. We will assume that any errors from this procedure will be expressions for the Gaussian variance. To emphasize the
insignificant, since the quantum effects for-@ interactions are smaller nonclassical curvature, we plot ldg-log k., wherek is the

than those for HH interactions and because the rate analysis depends expression from classical collision theory,
on an energy difference rather than on absolute atomization energies.

However, in principle, one ought to reparametrize the potential using 12 —Eau/RT

the correct well depth. For the-+HH potential, Brenner did correct the kC' =al e ™

H, well depth for zero-point enerdy.

(26)

with a chosen so thaty = 3.20 x 10713 cm® molecule? s™*
Ill. Results at 1000 K, which is the average of the QST and FACF
results?133The solid curves use the full TST expression, which

1. H, + H — H 4+ H». This reaction is the standard test case .
can be written as

for theoretical methods. Since it involves only H atoms the

guantum effects will be relatively large, making this a stringent oy "

test for an approximate quantum theory. k= oT YA (T)f(T) exp[-E(T«")/RT] (27)
We have calculated the temperature-dependent activation

energy as the difference betwe¥y evaluated at the linearH with

saddle point and at the reactants well. The values are fit by the 3

. 3/2
expression - 2o ¥ (H)
o= 2kgh (4nkBmH) I, (28)
E, = 9.806 kcal mol* — (2196 kcal mol* K)z +
1,3/ 32 where thel.,’s are the moments of inertia from the classical
(5369 kcal mal™ K Z)T (22) potential (i.e., at infiniteTl). The function

wheret = 1/Te. The maximum error from eq 22 i£0.005
kcal/mol for Tei > 670. f(T) =1 — 22.5K Ty (29)

Our strategy is to substitu(Teq™))/T, with T given by
eq 9, into the Arrhenius expression, eq 1, while using an is an accurate fit to the weak dependence of the ratio of
otherwise conventional reaction rate theory to determine the moments of inertia that comes from the effects of the Gaussian

temperature dependence of the prefactor Empirical fits averaging on the values of the bond distances. The function
typically use the forr31320.23 fu(T) is the ratio of theQ, in eq 24, which we have evaluated

b (31) Colton, M. C.; Schatz, G. @nt. J. Chem. Kinet1986 18, 961—
A=aT (23) 975.
(32) Chatfield, D. C.; Truhlar, D. GJ. Chem. Phys1991, 94, 2040~
wherea andb are adjustable parameters. In contrast, TST!dses 2044. )
(33) Matzkies, F.; Manthe, W. Chem. Phys1997 106, 2646-2653.
(30) Jones, L. H.; McDowell, R. S1. Mol. Spectrosc1959 3, 632— (34) Park, T. J,; Light, J. CJ. Chem. Phys1989 91, 974-988.
653. (35) Truhlar, D. GJ. Chem. Phy4976 65, 1008-1010.
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3.0 T T
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logyo k — l0gy ket
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Figure 2. Difference between lagk and logo ke vs 1000 KT for H,

+ H— H + Hy, with k andk in units of cn? molecule! s, ky is the

rate constant from classical collision theory, eq 26, with temperature-
independenE, and prefactoa = 3.50 x 10~ cm? K~2 molecule'?

s 1. Diamonds indicate results from gquantum scattering th&omhile
squares indicate flux autocorrelation function restflfghe solid curves
show results from EQPTST, using eq 27 with the one-dimensional
harmonic oscillator expression, eq 8 fo#, or with ¢? given by eq 6
with Ter equal toT or with Ter given by eq 9 with the indicated value
of the parametey. The dashed and the dastiot curves correspond

to conventional TST with a Wigner or Eckart tunneling correction,
respectively?” The dash-dot—dot curve corresponds to variational TST
with a multidimensional tunneling correctiéfwhile the dotted curve
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Figure 3. Difference between lagk and logg ke vs 1000 KT for H,

+ H — H + H,, with k andk in units of cn¥ molecule® s™1. The
units of k are cnt molecule! s. Diamonds indicate results from
guantum scattering theo#ywhile squares indicate flux autocorrelation
function result$® The solid curve corresponds to EQPTST, using eqs
27 and 9 withy = 1.5. The dotted and the dastot curves show the
low- and high-temperature limits of EQPTST. The dashed curve
corresponds to the simplified EQPTST expression given by eq 30 with
prefactora = 1.35 x 107 cm® K~ molecule’? s,

value for other systems, this would probably not cause too much
error in the rate constants, sin€gfor most molecules of interest
will be much smaller than the Halue. Therefore, we will treat
y = 1.5 as a general result that will be reasonably accurate for
arbitrary systems.

Figure 3 shows EQPTST results calculated with various
approximations to eq 27 that put the prefactor in the standard
form of eq 23. The lowF approximation fails above 600 K,

shows conventional TST, eq 27, with classical temperature-independentyhjle the highT expression fails below 2000 K. However, the

activation energy.

using vibrational frequencies from ref 36. The dotted curve

corresponds to conventional TST with the activation energy set

to the constanE,e, which for the Brenner potential is 9.806

expression

k= aT exp[~ET")/RT] (30)

kcal/mol. The other three curves show results from representa-with a chosen so that is equal to the full TST result at 1000

tive TST treatments with tunneling corrections; specifically, the
dashed and dasfdot curves are from conventional TST
calculations by Espinosa-Gaaaet al*” using corrections of the
Eckart or Wigner forms, respectively, while the dastot—dot
curve is from the variational TST of Garrett et #.with a
multidimensional semiclassical least-action tunneling correction

K, is in close agreement with the full expression over a very
wide range ofT. This is shown by the dashed curve in Figure
3. Equation 30 was constructed as a compromise between the
low- and highT limits. At lower values ofT, the use ofT?
instead ofT ~¥2 makesk slightly too small, while the use of

=1 instead of 1.5 makdsslightly too large. This cancellation

and the same potential that was used in the QST and FACFof errors is excellent for 156 T < 1500 K. At very highT,

calculations.
Our EQPTST withy = 1.5 gives excellent agreement with

the approximate expression will lie somewhat below the full
expression, but this might actually yield a more accurate result

the FACF and QST results at all temperatures except the lowestfor the true rate constant. TST in the limit of highbreaks

(250 K), where it gives a value that is somewhat too small. We
find®® thaty = 1.5 also gives excellent agreement with the exact
rate constants with isotopic substitution of D for H. It is clear
from eq 9 that the sensitivity of the results to the value chosen
for y decreases @k decreases, anfh decreases as the atomic

down due to barrier recrossings, which causes the predicted rate
constant to be higher than the actual rate constant. Variational
TST partly corrects for this effect, and eq 30 at 1500 K yields
aresult (1.02< 10711 cnm?® molecule! s71) that is closer to the
variational TST result of Garrett et al. (0.98 10! cm?

masses increase. Thus, even if 1.5 were not exactly the optimalmolecule s2) than is our full nonvariational TST result (1.05

(36) Truhlar, D. G.; Horowitz, C. JJ. Chem. Phys1978 68, 2466-
2476.

(37) Espinosa-Garaj J.; Olivares del Valle, F. J.; Corchado, JGbem.
Phys.1994 183 95-100.

(38) Garrett, B. C.; Truhlar, D. G.; Varandas, A. J. C.; Blais, NIr@.
J. Chem. Kinet1986 18, 1065-1077.

(39) Goodson, D. Z.; Boyd, A. D., unpublished.

x 10711 cm® molecule® s71).

2. CH4 + H — CH3z + H». This reaction will have the same
limiting T dependence in the Arrhenius prefactor as-HH,
that is, T~2 at low T andT32 at highT. Therefore, the argu-
ments that led to eq 30 should be valid as well for,CH
H. We obtained temperature-dependent activation energies as
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Figure 4. Difference between log k and logo ke vs 1000 KT for
CH4 + H — CHs + H,, with k andkg in units of cn? molecule® s,

ko is the is the rate constant from classical collision theory, eq 26,
with temperature-independelj and prefactoa = 3.65 x 10712 cm?
K~12 molecule! s*. The solid curve corresponds to the simplified
EQPTST expression given by eq 30 with prefacor 8.78 x 10714

cm® K~* molecule® s, The dotted curve corresponds to variational
guantum TST The dashed and dashlot curves show empirical fits

Goodson et al.

Figure 4 compares the experimental results for the rate
constant with theoretical results and empirical fits. The experi-
mental points correspond tal) the ESR flow-tube studies of
Kurylo et al.2122(x) the flow-discharge study of Sepehrad et
al.1® (+) the flash-photolysis shock-tube study of Rabinowitz
et al.2% and ) other miscellaneous earlier studies reviewed
by Shaw!? (However, we have omitted the result from Rost
and Jus® on account of the critique of that study by Rabinowitz
et al?% The solid curve is our result from EQPTST using the
simplified expression, eq 30, for the rate constant and eq 31
for the E,, and with the prefactor chosen to agree with the full
EQPTST result at 1000 K. The dashed and da$it curves
show empirical fits that have recently been recommended for
use in combustion modeling. The dashed curve comes from the
expression given by Glassnfain the latest edition of his
textbook. This expression is similar to the one recommended
by Baulch et af® The dash-dot curve corresponds to the
expression in the GRI-Mech datab&denally, the dotted curve
shows the results of Truong’s variational TST analysis with
multidimensional semiclassical tunneling correcttén.

Conclusion

Figure 4 shows that a simple analytical expression, eq 30,
with a temperature-dependent activation energy determined from
a Gaussian average of an empirical potential energy function
gives good agreement with experimental rate constants fqr CH
+ H over the full temperature range for which they are available.
This is especially striking since none of the parameters in the
expression were determined by fitting to the experimental points.

The approach presented here provides a middle ground
between the purely empirical fits that are generally used in
practical applications and the highly sophisticated, but compu-
tationally demanding, ab initio theoretical treatments. Since our
method is based on an empirical potential energy surface, it is

from refs 2 and 3, respectively. The symbols indicate experimental in essence an empirical fit. However, the empirical data set is

points from the following references: Rabinowitz et&({-); Sepehrad
et al!® (x); Kurylo et al?*?2(0); and various earlier studies reviewed
by Shaw? ().

the difference betweeXes evaluated at the reactants well and
at the CH saddle point, using a linear-&¢H—H configuration.
For the standard deviationsiy andocy, the effective temper-
ature functionTe1 was usedE;, is fit by the expression

E, = 12.00 kcal mol* — (1209 kcal mol* K)(T + Ty )
+ (7401 keal moT* K¥A(T + T, )2 (31)

within +0.016 kcal/mol over the range § 100K/T < 3.5.
Equation 31 has the form of an expansion in terms®f. The
calculation of the Clllenergy usescy only for the integration
over C-H bonds andyyy for the H—H bond. Nevertheless, a
fit for E; with Tp treated as a free parameter yielfiscy as
very nearly the optimal value.

Experimental results for this reaction span a temperature rang
from 372 to almost 2000 K. TST studi@s!” have predicted a
distinct upward curvature in the Arrhenius plot, and a review
by Shaw? of experimental results through the year 1978
supported this prediction. Subsequently, Sepehrad é? al.

concluded that a linear Arrhenius plot was more consistent with
the data, after omitting some apparently unreliable earlier results
and adding new results of their own. More recent analyses by

Baulch et ak® and by Rabinowitz et &8 discerned curvature
with A 0 T8 andA O T2 respectively, while the GRI-Mech
database for combustion modelingurrently usesA [ T162

e

not limited to the rate constants themselves. It includes,
indirectly, the wide range of hydrocarbon properties such as
molecular geometries and atomization energies used in the
parametrization of the potential. (We have, in effect, augmented
Brenner’s original data set with the three paramefgyg,

To.ch andy.) We obtain analytic expressions that are not much
more complicated than the standard empirical forms, but because
they contain a much greater variety of empirical information,
and because the functional form of the temperature dependence
is justified theoretically, they can be expected to be more
dependable at temperatures at which experimental results are
unavailable. This is a significant advantage, since rate constants
for reactions involving free radicals are difficult to measure
experimentally, especially over the large temperature ranges that
are needed for modeling the chemistry of the atmosphere and
the extremely large temperature ranges needed to model such
processes as pyrolysis and combustion.

In the present work, calculations were performed in the
context of TST. Another approach to reaction rate calculations
is direct simulation using molecular dynamics. The success of
our EQPTST has two implications for such simulations. First,
it supports the uge of the Brenner hydrocarbon potential in
those studies. This is an empirical potential, parametrized to a
data set consisting of propertiessiiblechemical species, yet
judging from the success of our rate constant calculations it

(40) Rost, P.; Just, TiBer. Bunsen-Ges. Phys. Cheb975 79, 682—

(4.11) Brenner, D. W.; Garrison, B. Adv. Chem. Phys1989 71, 281—
334. Garrison, B. J.; Dawnkaski, E. J.; Srivastava, D.; Brenner, D. W.
Sciencel992 255, 835-838.
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seems to be able to accurately model the unstablet@Hsition In the present work our goal has been to develop approxima-
state, since the curvature of the Arrhenius plot depends tions that put the path-integral expression for quantum dynamics
sensitively on the topography of the potential in the vicinity of in a form that requires only minor modifications of the usual
the saddle point. classical dynamics approaches to reaction rate theory. If nec-
The second implication is that it might be possible to use a essary, the effects of these approximations could be quantified
classical molecular dynamics calculation with a Gaussian- (at the cost of additional computational expense) by using more
averaged effective potential in place of quantum dynamics to rigorous path-integral methodg>
model processes in which quantum effects are important. The
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